DBXTalk

Chapter 1
DBXTalk

with the participation of:
Guillermo Polito (guillermopolito@gmail.com)

DBXTalk is a database driver that allows interaction with major relational
database engines such as Oracle and MSSQL, apart from those which are
open source, like PostgreSQL and MySQL.

Moreover, this driver is integrated with GLORP, enabling a complete and
open-source solution to relational database access. To do this, DBXTalk uses
a library called OpenDBX.

1.1 DBXTalk Driver Architecture

The DBXTalk Driver relies on several components in order to connect to dif-
ferent relational databases:

e The OpenDBXDriver package talks to the OpenDBX library and han-
dles the engines differences.

* OpenDBX is a C library which stands as an adapter between the dif-
ferent database engines and our Pharo image, and provides a common
interface to interact with through FFL.

¢ We will need the corresponding client database library that OpenDBX
will talk to.

DBXTalk

2 DBXTalk

DBXTalk Driver request
OpenDBX

response

e

Client Library

1.2 Installing DBXTalk OpenDBX Driver

In Order to install DBXTalk library, we need to install the previously detailed
components.

Install OpenDBX Driver

As we already introduced, an important part of DBXTalk architecture is the
OpenDBX Driver, which allows us to communicate with different relational
database engines with a common approach. OpenDBX is an open source
library, licensed as LGPL.

It’s installation instructions for different engines and operative systems
can be found on http://www.linuxnetworks.de/doc/index.php/OpenDBX.

You can also participate in the Issue Tracker and mailing list of this
proyect to ask questions and contribute.

Issue Tracker: http://bugs.linuxnetworks.de/index.php?project=3 Mailing List:
https://lists.sourceforge.net/lists/listinfo/libopendbx-devel

Install Smalltalk OpenDBXDriver

The OpenDBXDriver written in Smalltalk is also needed in order to use the
DBXTalk suite. The easiest way to download it is using it’s metacello config-
uration, ensuring all it’s dependencies to be loaded, such as FFI. This can be
performed executing in a workspace the following script:

Gofer it
squeaksource: 'DBXTalk';
package: 'ConfigurationOfOpenDBXDriver';
load.

http://www.linuxnetworks.de/doc/index.php/OpenDBX
http://bugs.linuxnetworks.de/index.php?project=3
https://lists.sourceforge.net/lists/listinfo/libopendbx-devel

1.3 Getting down to business with DBXTalk OpenDBXDriver 3

(((Smalltalk at: #ConfigurationOfOpenDBXDriver) perform: #project) perform: #version:
with: #stable) load

Ensuring everything was ok

The OpenDBXDriver package comes along with lots of tests cases you can
use to test the your installation. But before running the tests, you may want
to configure the database connection settings in order to match your actual
configuration. To do that, just go to the corresponsing DBX*Engine*Facility
class in the OpenDBXDriverTests package, and modify the createConnection
method to suite your needs.

For example, if I want to configure the tests to run in my MySql database,
I'should go to DBXMySQLPFacility»createConnection, to see the following:

createConnection

self connectionSettings: (DBXConnectionSettings
host: 'localhost'
port: '3306'
database: 'sodbxtest'
userName: 'sodbxtest’
userPassword: 'sodbxtest').

self platform: DBXMySQLBackend new.

There I can change the host, port, database, username and password to
connecto to my own database.

1.3 Getting down to business with DBXTalk
OpenDBXDriver

Now you have already installed your database driver, you are ready to use
it and build applications with it! But you need to know the basics in order
to get the mayor leagues. In the following section you will be introduced in
creating connections, execute SQL statements and handle transactions.

1.4 Creating a connection

The first step in order to execute a SQL statement in a database engine is
to create a connection to that database. The DBXTalk OpenDBXDriver uses
3 objects to fulfill this objective: a connection object, which uses a platfor-
m/backend object and a connection settings object.

4 DBXTalk

For example, to open a connection to a MySQL database called sodbxtest,
located in localhost you can use the following code:

settings := DBXConnectionSettings
host: 'localhost’
port: '‘3306'
database: 'sodbxtest'
userName: 'sodbxtest’
userPassword: 'sodbxtest'.
platform := DBXMySQLBackend new.
connection := DBXConnection platform: platform settings: settings.

connection connect.
connection open.

As you can see, after creating the connection object, you have to send it
first the #connect message to let OpenDBX create all the needded internal
structure. After that, you can send it the #open message to associate the
connection to the desired database, verify the credentials and enable us to
start sending querys.

The main reason to separate these two operations is to configure some
extra options before the connection is open. If you do not want to specify
any of these options, you can send the #connectAndOpen message to the
connection instead:

connection connectAndOpen.

Connection special options

As we told you in the last section, you can specify some special options to the
connection before it is opened. All of these options can be enabled through
the following helper methods of the connection. What they do is to try to
enable the desired option, and return a boolean indicating if the option suc-
ceded or not.

Each option may or not succeed because it depends on your database
engine support for it.

¢ #enableCompression

It tries to enable the Compression option.

¢ #enableEncryption: aEncryptionOption

It tries to enable the Encryption option. The possible encryption option
values are:

- DBXEncryptionValues never

1.4 Creating a connection 5

- DBXEncryptionValues try
- DBXEncryptionValues always

¢ #enableMultipleStatements

It tries to enable Multiple Statements option.

¢ #enablePagedResults

It tries to enable paged results.

¢ #enableSpecialModes: modes

It tries to enable specific modes. For example MySQL special modes
(http://dev.mysqgl.com/doc/refman/5.0/en/server-sgl-mode.html).

Executing SQL statements

The execution of a SQL statement in the database of your desire is performed
sending the #execute: message -or #executeMultiStatement: if enabled- to
the connection object. So, once you have your connection established and
open, you can try evaluating in a workspace code like:

"we create a table to store our trading card game cards in our MySQL database”
connection execute: 'CREATE TABLE CARD(ID INT AUTO<—INCREMENT PRIMARY
KEY, NAME VARCHAR(100))'

"we insert some cards into our database"
connection execute: 'INSERT INTO CARDS (NAME) VALUES("Giant Growth")'.
connection execute: 'INSERT INTO CARDS (NAME) VALUES("Llanowar Elves")'.

"If we did enable multistatements before opening the connection we can do some inserts
at the same time"
connection executeMultiStatement: 'INSERT INTO CARDS (NAME) VALUES("Rancor");
INSERT INTO CARDS (NAME) VALUES("Counterspell")".

"we execute an invalid SQL statement to see how it raises a DBXError"
connection execute: 'some invalid sql statement'.

Fetching results

So far we have only executed statements without looking at their results.
Each statement execution has a Result, which may be one of DBXResult,
DBXResultSet and DBXMultiStatementResultSetlterator.

A DBXResult is obtained when executing a SQL statement which does
not have a set of rows as a result -such as a CREATE TABLE, INSERT or
UPDATE operation. You can ask it for its #rowsAffected to know how many
rows were affected in the operation.

http://dev.mysql.com/doc/refman/5.0/en/server-sql-mode.html

6 DBXTalk

result := connection execute: 'UPDATE CARDS SET NAME="CounterSpell" where
NAME="Counterspell" '.
Transcript show: result rowsAffected.

A SQL statement with rows as a result -such as a SELECT statement-
brings a DBXResultSet as the result. A DBXResultSet is a consumable set of
rows. This means that onces you've consumed all the rows in the DBXResult-
Set, they will not be available any more. You can work with a DBXResultSet
in several ways:

¢ Delegate row iteration to the result set:

cardsResultSet := connection execute: 'SELECT » FROM CARDS'.
cardsResultSet rowsDo: [:row | Transcript show: (row valueAt: 1)]

* Getting all rows from a result set:

cardsResultSet := connection execute: 'SELECT » FROM CARDS'.
rows := cardsResultSet rows
rows do: [:row | Transcript show: (row valueAt: 1)]

¢ Fetching one row at a time:

cardsResultSet := connection execute: 'SELECT « FROM CARDS'.
[row := cardsResultSet nextRow.
row notNil]
whileTrue: [Transcript show: (row valueAt: 1); cr]

When accessing a ResultSet rows, we get some DBXRow instances to play
with. A DBXRow is the model of a database row, and each of the values
for it’s columns can be accessed in two formats: the raw format, which is
the string representation of the value, sent by the database, and a converted
format, which is the Pharo object representation for that object. The DBXRow
objects understand some of the following messages:

e #valueAt: retrieves the converted value at the column in the given in-
dex.

* #values retrieves a sequenceable collection with all the converted val-
ues of the row.

e #irawValueAt: retrieves the raw value at the column in the given index.

* #rawValues retrieves a sequenceable collection with all the raw values
of the row.

1.4 Creating a connection 7

Some examples of the behavior of a DBXRow are the following:

myRow valueAt: 1. —> 1 "First column is INTEGER and contains a 1. It retrieves a
Pharo Smalllnteger"”

myRow rawValueAt: 1. —>'1" "First column is INTEGER and contains a 1. It retrieves
an string"

myRow values. —> #(1 'Llanowar Elves') "A collection with every row value converted
to Pharo objects."
myRow rawValues. —> #('1' 'Llanowar Elves') "A collection with every row raw value."

Finally, the other kind of result we can get from a SQL statement is a
DBXMultiStatementResultSetIterator. It stands as a DBXResultSet container,
for multi-statement querys. You can browse the results using the following
convenience methods.

myMultistatementResult allResultsDo: [:aResult | "doSometing here with the result"]. "
internal iteration of the results."

[result := myMultistatementResult next. result notNil]
whileTrue: [:aResult | "doSometing here with the result"]. "iterating the results one by
one."

	DBXTalk
	DBXTalk Driver Architecture
	Installing DBXTalk OpenDBX Driver
	Getting down to business with DBXTalk OpenDBXDriver
	Creating a connection

